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What is Computer Vision?

e Enables machines to see the world through visual inputs similar to humans

e Allows machines 1o make sense of images, videos, etc
o ldentifying objects
o Classifying images
o eftc
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Computer vision is slowly becoming a part of our daily lives
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Circle to Search
wen Google

Apple’s Face ID used in Samsung’s Circle to Sebwrch Al Generated images
iIPhone feature (DeepFake)

University of [1] hitps://www.differencebetween.net/technology/difference-between-facial-recognition-and-face-id/
Maf‘ss?icshlfsetts [2] hitps://www.samsung.com/ph/support/mobile-devices/how-to-use-the-circle-to-search-feature-on-the-galaxy-s24/

Amherst [3] hitps://chameleonassociates.com/why-you-should-know-about-deepfake/
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Machine Learning Overview

Step 1: Training
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Computer vision uses Machine Learning to process and understand the
visual world
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Machine Learning Overview
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What are common computer vision problems?

Universityy  FAC& Recognition Image Segmentation
Massachusetts 8



Can we use computer vision to solve domain-specific problems?

e Domain-specific problems are problems

that refer to a specific area of expertise
o Forexample:
B water-related problems that hydrologists are
concerned with
B exiro-terrestrial objects that physicists are
inferested in

e Why is this challenging?
o Machine learning (ML) generally requires @
lot of labelled data
o Domain-specific problems generally don’t
have a lot of labelled data
o Labelled data are expensive because they
require inputs from experts

University of o : ; |
Massachusetts [1] https://engdineeringonline.ucr.edu/blog/what-does-a-hydrologist-do/ 9
Ambherst [2] hitps://science.nasa.gov/mission/hubble/science/universe-uncovered/hubble-star-clusters/
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Computer Vision in the Wild

e |n this talk, we will explore domain-specific applications of computer vision

1.

Remote monitoring of global water
quality using satellite images

. Helping wildlife conservation efforts

through wildlife habitat information and
satellite imagery

3.

Modeling relationships between
domain-specific tasks for efficient ML
model fraining
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Computer Vision in the Wild

e |n this talk, we will explore domain-specific applications of computer vision

1. Remote monitoring of global water
quality using satellite images

2. Helping wildlife conservation efforts
through wildlife habitat information and
satellite imagery
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Overview

A hosted analytic collaborative framework for
global river water quantity and quality from

SWOT, Landsat, and Sentinel-2
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Overview

A hosted analytic collaborative framework for
global river water guantity and quality from
SWOT, Landsat, and Sentinel-2

e SWOI, Landsat, and Sentinel are NASA
satellite missions with global coverage

e SWOT aims to survey Earth’s waters to
observe fine details of oceans and measure
changes in terrestrial waters

e Landsat and Sentinel are used to acquire
satellite imagery over Earth (lower resolution
than SWOT) for general remote sensing
applications

__-.'-'L'—v—'_'"-.?. = 3 o
I_;.-f’f \'.'-. E{ggeaisﬁ{?sgﬂs Rangel Daroya, Luisa Vieira Lucchese, Travis Simmons, Punwath Prum, Tamlin Pavelsky, John Gardner, Colin Gleason, Subhransu Maji. “Improving
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Overview

A hosted analytic collaborative framework for
global river water quantity and quality-from—
SWOT, Landsat, and Sentinel-2

e River water quantity: SWOT can be used to
derive discharge (amount of water
flowing in ariver)

e River water quality: To measure water
quality we use the amount of suspended
sediment concentiration (SSC)

Total Reaches:
213,485

.' \\a- UI'll‘JEl‘Slt}' of Rangel Daroya, Luisa Vieira Lucchese, Travis Simmons, Punwath Prum, Tamlin Pavelsky, John Gardner, Colin Gleason, Subhransu Maiji. “Improving
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Why rivers and sediments?

Surface/other
Freshwater 2.5% fIESh.m;I;ter 1.2%

e Rivers are infegral to communities

as a source of freshwater
Drinking water
Irrigation

O O OO

Glaciers Power (through dams)
e Homes for fish, wildlife, and plants

Total global Freshwater

water e Sedimentis an important measure
of rivers that is observable from

space
o Product of erosion

$C Trend o Needed for coastal resilience (e.g.,
~=Decreasing (32%)

Increasing (2%) fOF ﬂOOdiﬂg)
N o Impacts hydropower efficiency

University of
I;fllgl.?gifhusetts [1] https://www.usgs.gov/media/images/distribution-water-and-above-earth 16



https://www.usgs.gov/media/images/distribution-water-and-above-earth

Estimating suspended sediments require finding water from satellite

Ground Truth Ground Truth Ground Truth Ground Truth Ground Truth
Water Cloud Shadow Cloud Snow/Ice Terrain Shadow

e Finding water is an important prerequisite for sediment estimation
e We want to find good quality water pixels o have an accurate model

for SSC predictions

e Good quality water pixels are water pixels not covered by
o Cloud shadows
o Clouds
o lce/snow
o Terrain shadows

University of o o . . . .
Rangel Daroya, Luisa Vieira Lucchese, Travis Simmons, Punwath Prum, Tamlin Pavelsky, John Gardner, Colin Gleason, Subhransu Maiji. “Improving

\\‘b/ ﬂ?ﬁgfﬁhuseﬂs Satellite Imagery Masking using Multi-task and Transfer Learning”, in arXiv preprint arXiv:2412. 08545, 2024. 17



Standard pipelines are resource-intensive

(a) Standard SSC Estimation Pipeline Average
run time
HLS Satelite | —{ water |
Data ; :
T Jl Cloud l—‘—:
E Cloud §
Fmask dat ‘ Shadow ; Good Quality SSC Prediction
. S : Water Pixels Model
[P 194 s
+| Estimate position of sun
205s ‘I
Digital Elevation Terrain
Maps Shadow
561s
University of
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We propose a multi-task model for a more accurate and efficient SSC pipeline

(a) Standard SSC Estimation Pipeline Average
run time
HLS Satellite | Jl Water I-—v—
Data : :
; Jl Cloud '—‘—:
: Cloud :
Emask data Shadow Good Quality SSC Prediction
: : Water Pixels Model
‘{ Snow/Ice '—— —l o040 a —
teaces 1948 ««==="
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Maps Shadow
561s

(b) Proposed SSC Estimation Pipeline

l

HLS Satellite
Data

: Good Quality SSC Prediction
Multi-task Model Water Pixels Model

— 1.968 — — 004s —
20
'.0':;
%
5
| ,

Rangel Daroya, Luisa Vieira Lucchese, Travis Simmons, Punwath Prum, Tamlin Pavelsky, John Gardner, Colin Gleason, Subhransu Maiji. “Improving 19

TEE=—meIo S e W T
Cloud
Shadow
Snowl/ice
Satellite Imagery Masking using Multi-task and Transfer Learning”, in arXiv preprint arXiv:2412. 08545, 2024.

!

!

l

Terrain
University Shadow

Massachusetts
Ambherst

|




We propose a multi-task model for a more accurate and efficient SSC pipeline
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We validate our proposed model on different architectures and pre-training methods

RGB Ground Truth Water MNDWI DwM Deeplabv3+ MobileNetv3 Swin-T (Satlas)

32 N % 3 2 >

- =2 3l4] Proposed multi-task
) Swin-T (Satlas)

. . . >
Ground Truth Water MNDWI Deeplabv3+ MobileNetv3

X4 models have

k qualitatively better
%, results and
' & “\:‘ & a P P quantitatively

Ground Truth Water MNDWI DWM DeeplLabv3+ MobileNetv3 Swin-T (Satlas)
' u ( v: ' \ better results
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We validate on manually labeled cloud data from USGS personnel

We show that we outperform previous methods by at least 12% and 6% F1
Score for cloud shadow and clear predictions, respectively

University of
Massachusetts
Ambherst

Model Cloud (1) Cloud Shadow (1) Clear (1)
Baselines LANA (Zhang et al., 2024) 92.42% 57.53% 89.02%
Fmask (Qiu et al., 2019) 89.81% 45.42% 88.09%
U-Net Wieland (Wieland et al., 2019) 87.68% 52.06% 86.19%
Multi-task Models DeepLabv3+ (ImageNet pre-trained) 92.64% 65.79% 95.54%
MobileNetv3 (ImageNet pre-trained) 93.70% 63.60% 95.77%
SegNet (ImageNet pre-trained) 91.19% 57.64% 95.19%
ResNet50 (Satlas pre-trained) 85.78% 63.67% 92.77%
Swin-T (Satlas pre-trained) 92.96% 69.56% 95.80%
Swin-T (ImageNet pre-trained) 82.73% 4.32% 92.49%
Vit-B/16 (ImageNet pre-trained) 59.89% 0.01% 88.16%
Vit-B/16 (Prithvi pre-trained) 81.38% 6.94% 91.52%

Table. Performance of cloud masking on manually labeled LANA
dataset. Overall performance is measured with F1 Score.

[1] Zhang, HankuiK., Dong Luo, and David P. Roy. "Improved Landsat Operational Land Imager (OLI) Cloud and Shadow Detection with the Leaming Attention
Network Algorithm (LANA)." Remote Sensing 16.8 (2024): 1321.

22



We validate our proposed model on different architectures and pre-training methods

e We outperform baseline methods by almost 9% F1 Score on water

masking
Method Pre-training Model Type | F1 Score () Precision () Recall (1) IoU (1)
MNDWI 58.43% 78.92% 46.39% 41.28%
DWM CNN 82.21% 78.54% 86.24% 69.79%
DeepLabv3+ ImageNet CNN 89.67% 87.91% 91.50% 81.27%
MobileNetv3 ImageNet CNN 88.18% 85.16% 01.42% 78.86%
SegNet ImageNet CNN 83.47% 82.94% 84.01%  71.63%
ResNet50 Satlas CNN 81.33% 78.76% 84.08% 68.54%
Swin-T Satlas Transformer 91.10% 90.62 % 91.58% 83.65%
Swin-T ImageNet Transformer 80.73% 77.88% 83.80% 67.69%
ViT-B/16 ImageNet Transformer 82.56% 81.15% 84.03% 70.30%
ViT-B/16 Prithvi Transformer 76.61% 74.60% 78.74% 62.09%

~ University of
\‘f Massa{:hgsetts

Rangel Daroya, Luisa Vieira Lucchese, Travis Simmons, Punwath Prum, Tamlin Pavelsky, John Gardner, Colin Gleason, Subhransu Maiji. “Improving

Satellite Imagery Masking using Multi-task and Transfer Learning”, in arXiv preprint arXiv:2412. 08545, 2024.
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We validate our proposed model on different architectures and pre-training methods

e Runtime is 30x faster than baseline, making it possible to run the model
daily for frequent monitoring of rivers

Runtime on Runtime on Improvement

1 sample (s) 400k samples (days) (%)
Standard SSC Pipeline 18.757 86.84 -
DeepLabv3+ (ImageNet pre-trained) 2.002 9.27 89.33%
MobileNetv3 (ImageNet pre-trained) 0.601 2.78 96.80%
SegNet (ImageNet pre-trained) 2.259 10.46 87.96%
ResNet50 (Satlas pre-trained) 7.209 33.38 61.57%
SwinT (Satlas pre-trained) 6.260 28.98 66.62%
SwinT (ImageNet pre-trained) 1.254 5.80 93.32%
ViT-B/16 (ImageNet pre-trained) 2.450 11.34 86.94%
ViT-B/16 (Prithvi pre-trained) 3.493 16.17 81.38%

S~ University of
| \‘. Massa{:hgsetts

Rangel Daroya, Luisa Vieira Lucchese, Travis Simmons, Punwath Prum, Tamlin Pavelsky, John Gardner, Colin Gleason, Subhransu Maiji. “Improving
Satellite Imagery Masking using Multi-task and Transfer Learning”, in arXiv preprint arXiv:2412. 08545, 2024. 24



Conclusion

A hosted analytic collaborative framework for global river water quantity and
quality from SWOT, Landsat, and Sentinel-2

e We can observe SSC over any water in satellite imagery
o Infroduces performance and speed improvements
o Possible torun at a high frequency over fime and space
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Computer Vision in the Wild

e In this talk, we will explore domain-specific applications of computer vision

1. Remote monitoring of global water
quality using satellite images

2. Helping wildlife conservation efforts
through wildlife habitat information and
satellite imagery

3. Modeling relationships between
domain-specific tasks for efficient ML

e = model training
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Recall: Machine Learning Overview

Step 1: Training (J)l:’
i\ ) | Machine Learning [ idog”
J—’;: \ Model 9
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Data Label

Step 2: Inference/Testing
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Model Feature Vectors
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Machine Learning
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The input to an ML model can be compressed to a vector

Label

ML model
encoder

[0, 0.2,0.001, 0.2679, ...]

feature vector

(image representation)

ML model
decoder

“dog
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Satellite image representations

Satellite image representations refer 1o the encoded satellite image using @

given ML model

ML model
encoder

Satellite image representation
/ (small vector)

Goal: train any ML model to be better at producing satellite image
representations (better means improved performance on satellite image tasks)

\
X

> [0, 0.2, 0.001, 0.2679, ...]

Satellite image

- - ﬂ
E{ggiisﬁ{?sgﬁs Rangel Daroya, Elijah Cole, Oisin Mac Aodha, Grant Van Horn, Subhransu Maiji. "WIildSAT: Learning Satellite Image Representations from Wildlife
Ambherst Observations," in arXiv preprint arXiv:2412.14428, 2024. 30



Overview

* Main question: can we use the distribution of wildlife to improve
satellite iImage representatione

« To do this, we need a dataset with the following:
= Location: Latitude, longitude
- Satellite images at the given location
= Text that describe the species present at the location and corresponding
information about their habitat

G- 10\ University of

Rangel Daroya, Elijah Cole, Oisin Mac Aodha, Grant Van Horn, Subhransu Maiji. "WildSAT: Learning Satellite Image Representations from Wildlife
| Massachusetts g ya. tl 'S u U Maiji. "Wi ing i ge Rep i il

Observations," in arXiv preprint arXiv:2412.14428, 2024. 31



Wildlife observation data can be used to learn about the different habitats

Do’rg from iNaturliast [1], combined with Wikipedia [2] and Sentinel [3] data can be
use

Q Mountain Goat

—— The mountain goat

—— (Oreamnos americanus),

— also known as the Rocky
Mountain goat, is a
cloven-footed mammal
that is endemic to the
remote and rugged
mountainous areas of
western North America.

Why use wildlife observation datae

e Associated text of the wildlife contains information about the habitat and
the types of environment each species prefer

e These habitat descriptions can then supplement and further describe
satellite imagery

[1] Grant Van Hom, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig Adam, Pietro Perona, and Serge Belongie. The inaturalist species
ﬂ: e Uni\.rersit}' of classification and detection dataset. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 8769-8778, 2018
|::f "_ MB.SSHChl]SEttS [2] Wikipedia. https://www.wikipedia.org. Accessed on 2024-11-14.

X i . .. . . . .
&_J’; Ambherst [3] ESA. Sentinel-1-missions-sentinel online-sentinel online. Eur. Sp. Agency, 2022. 32



Wildlife observation data can be used to learn about the different habitats

Data from iNaturliast [1], combined with Wikipedia [2] and Sentinel [3] data can be

used

O Mountain Goat

— The mountain goat

—— (Oreamnos americanus),

— also known as the Rocky
Mountain goat, is a
cloven-footed mammal
that is endemic to the
remote and rugged
mountainous areas of
western North America.

O Cactus Wren

—— The cactus wren

—— (Campylorhynchus

— brunneicapillus) is a
species of wren that is
endemic to the deserts of
the southwestern United
States and northern and
central Mexico.

o0

O Spotted Hyena

— The spotted hyena (Crocuta

—— crocuta), also known as the

— laughing hyena, is a hyena
species.... The species
dwells in semi-deserts,
savannah, open woodland,
dense dry woodland, and
mountainous forests up to
4,000 m in altitude

O Eurasian Lynx

— The Eurasian lynx (Lynx

—— lynx) is one of the four

~ extant species within the
medium-sized wild cat
genus Lynx. ... It inhabits
temperate and boreal
forests up to an elevation
of 5,500 m (18,000 ft).

O Japanese Macaque

—— The Japanese macaque

—— (Macaca fuscata), also

— known as the snow
monkey, is a terrestrial Old
World monkey species... It
can be found in both warm
and cool forests, such as
the deciduous forests of

central and northern Japan

[1] Grant Van Hom, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig Adam, Pietro Perona, and Serge Belongie. The inaturalist species

___-j}" “\ Universit}' of classification and detection dataset. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 8769-8778, 2018

- : Massachusetts [2] Wikipedia. https://www.wikipedia.org. Accessed on 2024-11-14.

Ambherst [3] ESA. Sentinel-1-missions-sentinel online-sentinel online. Eur. Sp. Agency, 2022. 33




WildSAT Architecture (Contrastive Training)
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WildSAT Architecture (Contrastive Training)
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WildSAT Architecture (Contrastive Training)

¢ Trained

Frozen

s‘\

!

T(1%)

£

Satellite Image
-| Encoder

This worm snail
lives along the

> Pacific coast of
L North America,

south of Monterey.

Large Language
Model

z, e - feature
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T - geometric image
augmentation —
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env(a) = [0.12,0.99, ...]

Location Encoder
environmental covariates (SINR)

University of
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txt

loc

Training involves 3
objectives that cover
the 3 modalities:

1. Image

2. Text

3. Location

Conftrastive loss is used
for each of the

objectives
- encourages similar data to
have similar representations

Rangel Daroya, Elijah Cole, Oisin Mac Aodha, Grant Van Horn, Subhransu Maii. "WIildSAT: Learning Satellite Image Representations from Wildlife
Observations," in arXiv preprint arXiv:2412.14428, 2024.
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WIildSAT at Inference Time

(1) Downstream tasks (2) Zero-shot image retrieval

. | argmax( similarity(z,e_) ) —

Satellite Image “river”’ e
Encoder 7.
Satellite Image 1> 722
Encoder Zy,Z,
“river’’ —{Large Language e
Model Ext

University of
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Rangel Daroya, Elijah Cole, Oisin Mac Aodha, Grant Van Horn, Subhransu Maii. "WIildSAT: Learning Satellite Image Representations from Wildlife
Observations," in arXiv preprint arXiv:2412.14428, 2024. 37



WIildSAT at Inference Time

SparseResidential Viaduct

StorageTanks

(1) Downstream tasks

Satellite Image
Encoder

airplane

overpass

Downstream classification tasks can use
the satellite representation from the
encoder without fraining the encoder.

baseball_diamond

A trainable linear layer is then tuned for
varying datasets with different classes.
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WIildSAT at Inference Time

(2) Zero-shot image retrieval

argmax( similarity(z, e_) ) —

; VR ¢
Satellite Image 1> 722
Encoder 2y, 2,
[
“river’ —Large Language e
Model B

Lero-shot image retrieval requires no
additional fraining.
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WIildSAT at Inference Time

(2) Zero-shot image retrieval

o The representation from the image and
SR SIS G ) > the text encoders are taken as is from the
| ‘ Z,s Zs,
Z,,2,

frozen encoders.
I etxt

Lero-shot image retrieval requires no
additional fraining.
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Satellite Image
Encoder

“river’ —m{Large Language
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WIildSAT at Inference Time

(2) Zero-shot image retrieval

o The representation from the image and
USRS A G ) ) the text encoders are taken as is from the

B frozen encoders.
y AR 4
Satellite Image 1322 . e .
e 7.2, Given a text query (e.g., “river”), its
representation/vector is computed
“river” - Large Language e
Model Bt

Lero-shot image retrieval requires no
additional fraining.
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WIildSAT at Inference Time

(2) Zero-shot image retrieval

o The representation from the image and
SR SIS G ) s ! the text encoders are taken as is from the

B frozen encoders.
VRO ¢

Satellite Image 1> =2 . s .
Encod; g Z2, Given a text query (e.g., river”), its

representation/vector is computed

“river” —|Large Language e Given a collection of images, all their
txt . .

el i corresponding representations/vectors are

also computed

Lero-shot image retrieval requires no
additional fraining.
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WIildSAT at Inference Time

(2) Zero-shot image retrieval

The representation from the image and
argmax( similarity(z, e,_) ) — '

the text encoders are taken asis from the

frozen encoders.
VRO ¢

Satellite Image — 1772 . e .
Ef,coder g Z.sZ, Given a text query (e.g., river”), its

representation/vector is computed

“river” —» Large Language R_— Given a collection of images, all their
txt . .

Model corresponding representations/vectors are

also computed

Lero-shot image retrieval requires no

additional training. The image vector with the highest cosine

similarity with the text vector will be
returned as the output.
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Zero-shot Retrieval Examples (“ocean”
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Zero-shot Retrieval Examples (“mountains and hills”)

mountains and hills
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Zero-shot Retrieval Examples (“cactus”)

cactus
2
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Zero-shot Retrieval Examples (“fish”)
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More Zero-shot Satellite Image Retrieval Examples

thropical forest ‘\Qalpme forest | O\ desert ocean forest grassland @ gull q amenca i q house finch
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Linear probing results on downstream satellite image classification datasets

WIIdSAT (+WS) improves performance across different datasets and models

UCM AID RESISC45 FMoW EuroSAT So2Sat20k BEN20k

Encoder [74] [72] [7] [8] [27] [78] [62]
Base +WS | Base +WS |Base +WS |Base +WS |Base +WS |Base +WS |Base +WS
ImageNet [13] 932 975|844 B8B9| 882 930 438 514|945 973 | 418 552 | 523 582
o MoCov3 [6] 942 05.1| 86.0 869| 89.1 903 | 51.1 529|959 971 | 476 566 | 51.6 57.0
E CLIP [57] 945 963 | 863 88.0| 921 930 51.5 528922 97.1| 376 497 47.1 591
= Prithvi-100M* [31] | 49.7 85.5| 359 712|426 735|192 305|673 935|215 451 33.6 506
< SatCLIP* [34] 38.2 503 )| 374 464 | 404 462 | 190 20.1| 746 794 | 39.0 43.1 | 27.0 28.7
Random weights 41 755| 38 621| 19 624| 80 26.0| 11.1 904| 59 468| 00 512
E ImageNet [13] 940 969|879 89.0| 904 918 | 476 50.7) 96.2 973 | 483 515 | 54.1 57.7
2 SatlasNet [4] 896 9012|743 81.2| 802 86.5| 31.8 446 90.8 955| 364 53.1| 48.7 56.5
¥ Random weights 21.0 817|195 720|199 749 | 12.1 334|599 027|219 459| 98 524
ImageNet [13] 942 0936 | 878 86.7| 905 90.1| 473 46.0| 955 96.0| 36.1 46.6| 558 575
2 MoCov3 [6] 92.0 935|830 833 8.0 876 | 50.2 457 | 935 0951 | 272 425 )| 46.6 538
% SatlasNet [4] 86.8 90.1| 725 794 | 81.8 854 | 347 424|935 954 | 339 448 449 564
@ SeCo [46] 86.1 888|743 796| 802 863 | 359 428 )| 897 955)| 399 46.0| 443 573
% SatCLIP* [34] 694 762|631 718|702 788|362 399 )| 834 929 | 454 449 | 423 48.2
Random weights 247 799|223 682|245 747|127 369|652 922| 59 423|199 513
Overall average 68.8 86.1| 61.2 77.0| 653 81.0| 334 41.1 | 80.2 938 | 326 47.6| 385 53.1
Average w/o random 81.8 879|727 794 | 778 835|390 433 889 943 | 379 483 | 457 534
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Conclusion

WIIdSAT: Learning Satellite Image Representations from Wildlife Observations
e We showed that information on habitats of wildlife can be used to
improve satellite image representations in ML models

o Can improve performance on downstream satellite image tasks
o Can be used for zero-shot image retrieval using arbitrary text input

I — T T
- L - ok aeees &9 ake @
() [ o 989 SBAReAS @
) i ) Eurasian
' Mountain Goat | \__J Eurasian Lynx H sses s e @ @
—— The mountain goat " —— The Eurasian lynx (Lynx L] e 088  SE08R
— (Oveamnos americanus). || — lynix) is 000 Of the fowr L ] * L * #9009
= also known as e Rocky || = extant species within the L] "'. ='='= [ ] ='.‘ = [ ]
Mountain goat, is a medum-sized wild cat ™ . 88 88 a8 & -l "]
dioven-footed mammal gonus Lynx. ... It inhabits [ 1] L 1] & & #0008 & 2000 R L N ] L]
that is endemic to the temperate and boreal ".i‘l:- .‘. '- |. ==.= ==. ."-.== -e
remote and rugged forests up 1o & elevation
mountiinciis srous of of 5,500 m (18,000 &) & a8 & @ & & & 88 48 888 S8
d ' LL N T B L BN ] L ] Ll N 1]
western North Americs. | o8 _ S80S 88 . " 8 S8 8
] . 88 el a8 L ] [T I 1]
LI lIIIIll]] LN B BN A 117111
. L1111 Nl L ] L1 1] L1 1]
.0 @ LI L ] L 1]
_ O e e e e o _etes o
i
{__) Cactus Wren JJapanese Macaque .= ='= -=-- ,.. H ==' - & -
w— The cactus wren --—moupmmacoque
— (Campylorhynchus lMococaI scata), also aae . - - e -
—4 9 Spotted Hyena —x . he & & & 8 & A0 @ L] LL L1 N |
wnneicapdius) is & - ¢ oW Saow LIl11] ok & 8 88 (11 1]] (111
spocies of wren that is = The spotied hyena (Crocuts mryaaxmumow & 88 & 0 08 8060 & 0 & & 8 88 @
endemic % the deserts of — crocuta), also known as the Word monkey species. .. it Ll 1 1] *e 111 1Ll . »
the southwestern United " laughing hyena, is a hyena can be found n both warm [ 1 2 N 11 ] L L N 11 B 1] SReRe &9
States and northern and species..... The species and cool forests, such as .' ™ e =..=-.. '..' . :: -
central Mexico dwelle b semi-desarts, the deciduous forests of e 8 8 880 0@ . » aseee
savannah, open woodland, contral and northern Japan 1T [ [T I TITT 1]
dense dry woodland, and B LB T T ] [ ] e 8 @ L L I
mountainous forests up 1o [ ] I' . ‘l L 1] L N [ 1] l [ ]
4,000 m in aittude L L L L] a8 209
L] ilvl L 1] Il 111 LN ] i L 1]

arxiv.org/abs/2412.14428

G- 10, University of
f=1 /, Massachusetts Rangel Daroya, Elijah Cole, Oisin Mac Aodha, Grant Van Horn, Subhransu Maiji. "WIildSAT: Learning Satellite Image Representations from Wildlife 50
&h, Ambherst Observations," in arXiv preprint arXiv:2412.14428, 2024.



Computer Vision in the Wild

e In this talk, we will explore domain-specific applications of computer vision

1. Remote monitoring of global water
quality using satellite images

2. Helping wildlife conservation efforts
through wildlife habitat information and
satellite imagery

ey
% o 3. Modeling relationships between
-m!ﬁ% =] H domain-specific tasks for efficient ML

__ H———— model training
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Overview: Transfer Learning

Training #1 (Pre-training)
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Overview: Transfer Learning

Training #1 (Pre-training)
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Asymmetry of transfer learning

Training #1 Training #1
Data Label Data Label

AS

' Machine Learning
Model

i Machine Learning
—_—

J“ 3 Model ~ dog

e B Y

Training #2
Training #2

g
b 5 . s
- ,\e/ Machine Learning
N

Machine Learning .
SN 1
J_ Model dog
- - gl R

Model

e E{niversﬁtyof
| . assachusetts
\5/ Ambherst >




Problem Overview

e Modeling and visualizing relationships between tasks or datasets is
Important for solving various meta-tasks
o Dataset Discovery, Multitask Learning, Transfer Learning

e However, many relationships are asymmetric (e.g., containment,

transterability)
Bw
T.mndm;
@"(‘a <
DI ‘Mti’; Class Arachnida
"/ (nonfix) |
; 'Y N is '"Fﬁ,"ﬂs | ] |
l-wh?mmg X Order Order Order
codde 4 i Araneae Scorpiones Ixodida
Scene C
D ‘mi — f.lmm Edges I
e R | | _ |
,  Oveci -~ Family Family Family Family Family Family
2D p Proj. V4 Salticidae pjsauridae Oxyopidae Buthidae Vaejovidae |xodidae
(a) Transfer Learning task affinity (Taskonomy [1]) (b) Taxonomy (iNaturalist + CUB)

G~ 10\ Universityof
| \‘. Massachusetts
\5/ Ambherst

[1] Zamir, Amir R., et al. "Taskonomy: Disentangling task transfer learning." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.



Recall: Satellite image representations

Satellite image representations refer 1o the encoded satellite image using @

given ML model

ML model
encoder

Satellite image representation
/ (small vector)

\
X

> [0, 0.2, 0.001, 0.2679, ...]

Satellite image
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Task Representations

e Can we create task representations that preserve asymmetric

relationships®

“dog”

\

Task2Box

“CO.I.H

Dataset
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(4,5)

-

g [[4,5], [1,3]]

Box representation of the dataset

(not just a vector)

: Rangel Daroya, Aaron Sun, Subhransu Maiji. “Task2Box: Box Embeddings for Modeling Asymmetric Task Relationships,” Proceedings of the
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Problem Overview

e Can we create task representations that preserve asymmetric
relationships?

e Proposed Solution:

o Use a model to learn box embeddings (axis-aligned hyperrectangles) to represent
each dataset in a low dimension

= Mammalia
& Canidae
¥ @ ®  Amphibia

i

Dim 2
(Y

TaskZ2Box Dim 2

Tasks as points Tasks as boxes
~1-2\ Universityof a

B Mammalia
1 Canidae
3 Amphibia
| Massachusetts

1 0 4
Ambherst Dim 1
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Why boxes?

e Boxes can represent asymmetric relationships (unlike points)
o hierarchy, transferability
e |t can easily be visualized and interpreted

e Boxes are closed under intersection
o l.e., the intersection of two boxes will always be a box

Tasks as boxes

= Mammalia
I Canidae
Amphibia

TaskZ2Box Dim 2

University of - -
Iﬂéﬁfﬂfhusms Task2Box Dim 1 40



Task2Box Accurately Models Hierarchical Relationships

Learned Task Embeddings

University of
Massachusetts
Ambherst

Class Arachnida

Order
Scorpiones

Order
Araneae

Order Scorpione

(B)

=111 Family
Buthidae Vaejovidae

Order Araneae

Family Salticidae Q

| ] Family
Family \Pisauridae

Oxyopidae |

Order Ixodid

Family

Ixodidae

Learned hierarchy for Class Arachnida

Class Arlachnida

[
Order

Araneae

[

Family Family Family

Salticidae pisauridae Oxyopidae Buthidae Vaejovidae |xodidae

[ |
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Rangel Daroya, Aaron Sun, Subhransu Maiji. “Task2Box: Box Embeddings for Modeling Asymmetric Task Relationships,” Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024, pp. 28827-28837
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Task2Box Accurately Models Hierarchical Relationships

Method Existing Datasets Novel Datasets
peLip (g, o°)cLip FIM perLip  [,0°lcLip FIM

TASK2BOX (2D) 69.23% 67.84% 39.61% | 50.07% 39.66% 10.06%
TASK2BOX (3D) 79.66% 79.35% 57.63% | 70.04% 64.53% 20.65%
TASK2BOX (5D) 84.67 % 82.41% 79.72% | 73.79% 72.11% 34.88%
MLP Classifier 45.25% 61.45% 26.34% | 39.06% 44.54% 19.90%
Linear Classifier 4.40% 3.11% 7.06% 4.77% 5.87% 15.92%
KL Divergence - 6.58% 7.94% - 5.90% 0.00%
Asymmetric Cosine 9.29% 11.54% 2.83% 1.47% 1.47% 1.47%
Asymmetric Euclidean | 1.71% 1.71% 8.53% 1.47% 1.47% 1.91%
Random 2.06% 1.49%

* & ﬂ
E{ggiisﬁggﬂs Rangel Daroya, Aaron Sun, Subhransu Maiji. “Task2Box: Box Embeddings for Modeling Asymmetric Task Relationships,” Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024, pp. 28827-28837
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Task2Box Accurately Models Transfer Learning Relationships

Colorization

Jigsaw-Puzzle Colorization
=0 ol
Depth @ |3 a |E
H |E|| Euclidean 5 [E
2 |2|| Distance s
A E 4F
Triplgt-Fixated-Camera-Pose E - % =
= o

(a) (b}

« The figure shows predicted source
tasks (larger boxes) that tfranster well
to target tasks (smaller shaded
boxes).

« Task2Box can generalize on task
affinity values from Taskonomy to
predict and show fransferability
between tasks.

University of
Massachusetts
Ambherst

(c)

ligsaw-Puzzle Inpainting
= e
Reshading E by
Pairwise-Fixated- 3 %
Camera-Pose =
)] (e)
Method Existing Daf:asets Novel Data!sets
Spearman’s p Spearman’s p
TASK2BOX (2D) 0.85 £+ 0.06 0.12 + 0.21
TAsk2Box (3D) 0.93 £+ 0.02 0.48 + 0.24
TASK2BoXx (5D) 0.94 + 0.03 0.39 + 0.22
MLP 0.88 4+ 0.06 0.31 +£0.18
Linear 0.75 £0.11 0.40 + 0.24
Random 0.05 £ 0.14 0.15 £ 0.07

Rangel Daroya, Aaron Sun, Subhransu Maiji. “Task2Box: Box Embeddings for Modeling Asymmetric Task Relationships,” Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024, pp. 28827-28837
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Conclusion

Task2Box: Box Embeddings for Modeling Asymmetric Task Relationships

[} SEATTLE, WA QUL rived Miede )

* Proposed a method of representing tasks as box embeddings
« The representations are interpretable with low dimensionality

« Shows that hierarchical and transfer learning relationships can be
accurately modeled
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Computer Vision in the Wild

e |n this talk, we will explore domain-specific applications of computer vision

1.

Remote monitoring of global water
quality using satellite images

Helping wildlife conservation efforts
through wildlife habitat information and
satellite imagery

Modeling relationships between
domain-specific tasks for efficient ML
model fraining
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Thank you!

Papers in this talk:

1. Rangel Daroyaq, Luisa Vieira Lucchese, Travis Simmons, Punwath Prum, Tamlin Pavelsky,
John Gardner, Colin Gleason, Subhransu Maiji. “Improving Satellite Imagery Masking
using Multi-task and Transfer Learning”, in arXiv preprint arXiv:2412. 08545, 2024.

2. Rangel Daroyaq, Elijah Cole, Oisin Mac Aodha, Grant Van Horn, Subhransu Maji. "WildSAT:
Learning Satellite Image Representations from Wildlife Observations,” in arXiv preprint
arXiv:2412.14428, 2024.

3. Rangel Daroya, Aaron Sun, Subhransu Mqji. “Task2Box: Box Embeddings for Modeling
Asymmetric Task Relationships,” Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2024, pp. 28827-28837
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