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● Enables machines to see the world through visual inputs similar to humans

● Allows machines to make sense of images, videos, etc
○ Identifying objects
○ Classifying images
○ etc

What is Computer Vision?

+ Computer Vision “dog”
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Computer vision is slowly becoming a part of our daily lives

Apple’s Face ID used in 
iPhone

[1] https://www.differencebetween.net/technology/difference-between-facial-recognition-and-face-id/
[2] https://www.samsung.com/ph/support/mobile-devices/how-to-use-the-circle-to-search-feature-on-the-galaxy-s24/
[3] https://chameleonassociates.com/why-you-should-know-about-deepfake/

Samsung’s Circle to Search 
feature

AI Generated images 
(DeepFake)

https://www.differencebetween.net/technology/difference-between-facial-recognition-and-face-id/
https://www.samsung.com/ph/support/mobile-devices/how-to-use-the-circle-to-search-feature-on-the-galaxy-s24/
https://chameleonassociates.com/why-you-should-know-about-deepfake/
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Machine Learning Overview

Machine Learning 
Model

Step 1: Training

Data Label

“dog”

Computer vision uses Machine Learning to process and understand the 

visual world
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Machine Learning Overview

Machine Learning 
Model

Step 1: Training

Data Label

“dog”

Machine Learning 
Model

“cat”

Machine Learning 
Model

“tree”
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Machine Learning Overview

Machine Learning 
Model

Step 1: Training

Step 2: Inference/Testing

Data Label

“dog”

Machine Learning 
Model

“dog”
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Object Detection

What are common computer vision problems?

“dog”

“tree”
Image Classification

Face Recognition Image Segmentation
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● Domain-specific problems are problems 

that refer to a specific area of expertise
○ For example: 

■ water-related problems that hydrologists are 

concerned with

■ extra-terrestrial objects that physicists are 

interested in

Can we use computer vision to solve domain-specific problems?

[1] https://engineeringonline.ucr.edu/blog/what-does-a-hydrologist-do/
[2] https://science.nasa.gov/mission/hubble/science/universe-uncovered/hubble-star-clusters/

● Why is this challenging?
○ Machine learning (ML) generally requires a 

lot of labelled data
○ Domain-specific problems generally don’t 

have a lot of labelled data
○ Labelled data are expensive because they 

require inputs from experts

https://engineeringonline.ucr.edu/blog/what-does-a-hydrologist-do/
https://science.nasa.gov/mission/hubble/science/universe-uncovered/hubble-star-clusters/
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● In this talk, we will explore domain-specific applications of computer vision

Computer Vision in the Wild

1. Remote monitoring of global water 
quality using satellite images

2. Helping wildlife conservation efforts 
through wildlife habitat information and 
satellite imagery

3. Modeling relationships between 
domain-specific tasks for efficient ML 
model training
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A hosted analytic collaborative 

framework for global river water quantity 

and quality from SWOT, Landsat, and 

Sentinel-2

Rangel Daroya, Luisa Vieira Lucchese, Travis Simmons, Punwath Prum, 
Tamlin Pavelsky, John Gardner, Colin Gleason, Subhransu Maji
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A hosted analytic collaborative framework for 

global river water quantity and quality from 

SWOT, Landsat, and Sentinel-2

Overview

Rangel Daroya, Luisa Vieira Lucchese, Travis Simmons, Punwath Prum, Tamlin Pavelsky, John Gardner, Colin Gleason, Subhransu Maji. “Improvi ng 

Satellite Imagery Masking using Multi-task and Transfer Learning”, in arXiv preprint arXiv:2412. 08545, 2024.
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A hosted analytic collaborative framework for 

global river water quantity and quality from 

SWOT, Landsat, and Sentinel-2

Overview

● SWOT, Landsat, and Sentinel are NASA 

satellite missions with global coverage

● SWOT aims to survey Earth’s waters to 
observe fine details of oceans and measure 

changes in terrestrial waters
● Landsat and Sentinel are used to acquire 

satellite imagery over Earth (lower resolution 

than SWOT) for general remote sensing 
applications

Rangel Daroya, Luisa Vieira Lucchese, Travis Simmons, Punwath Prum, Tamlin Pavelsky, John Gardner, Colin Gleason, Subhransu Maji. “Improvi ng 

Satellite Imagery Masking using Multi-task and Transfer Learning”, in arXiv preprint arXiv:2412. 08545, 2024.
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Overview

A hosted analytic collaborative framework for 

global river water quantity and quality from 

SWOT, Landsat, and Sentinel-2

● River water quantity: SWOT can be used to 

derive discharge (amount of water 

flowing in a river)

● River water quality: To measure water 
quality we use the amount of suspended 

sediment concentration (SSC)

Rangel Daroya, Luisa Vieira Lucchese, Travis Simmons, Punwath Prum, Tamlin Pavelsky, John Gardner, Colin Gleason, Subhransu Maji. “Improvi ng 

Satellite Imagery Masking using Multi-task and Transfer Learning”, in arXiv preprint arXiv:2412. 08545, 2024.
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● Rivers are integral to communities 

as a source of freshwater
○ Drinking water
○ Irrigation 
○ Power (through dams)
○ Homes for fish, wildlife, and plants

● Sediment is an important measure 
of rivers that is observable from 

space
○ Product of erosion
○ Needed for coastal resilience (e.g., 

for flooding)
○ Impacts hydropower efficiency 

Why rivers and sediments?

[1] https://www.usgs.gov/media/images/distribution-water-and-above-earth

https://www.usgs.gov/media/images/distribution-water-and-above-earth
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● Finding water is an important prerequisite for sediment estimation

● We want to find good quality water pixels to have an accurate model 
for SSC predictions

● Good quality water pixels are water pixels not covered by
○ Cloud shadows
○ Clouds
○ Ice/snow
○ Terrain shadows

Estimating suspended sediments require finding water from satellite 
images

Rangel Daroya, Luisa Vieira Lucchese, Travis Simmons, Punwath Prum, Tamlin Pavelsky, John Gardner, Colin Gleason, Subhransu Maji. “Improvi ng 

Satellite Imagery Masking using Multi-task and Transfer Learning”, in arXiv preprint arXiv:2412. 08545, 2024.
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Standard pipelines are resource-intensive

Rangel Daroya, Luisa Vieira Lucchese, Travis Simmons, Punwath Prum, Tamlin Pavelsky, John Gardner, Colin Gleason, Subhransu Maji. “Improving 

Satellite Imagery Masking using Multi-task and Transfer Learning”, in arXiv preprint arXiv:2412. 08545, 2024.
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We propose a multi-task model for a more accurate and efficient SSC pipeline

Rangel Daroya, Luisa Vieira Lucchese, Travis Simmons, Punwath Prum, Tamlin Pavelsky, John Gardner, Colin Gleason, Subhransu Maji. “Improving 

Satellite Imagery Masking using Multi-task and Transfer Learning”, in arXiv preprint arXiv:2412. 08545, 2024.
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We propose a multi-task model for a more accurate and efficient SSC pipeline

Rangel Daroya, Luisa Vieira Lucchese, Travis Simmons, Punwath Prum, Tamlin Pavelsky, John Gardner, Colin Gleason, Subhransu Maji. “Improving 

Satellite Imagery Masking using Multi-task and Transfer Learning”, in arXiv preprint arXiv:2412. 08545, 2024.
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Proposed multi-task 

models have 

qualitatively better 

results and 

quantitatively 

better results

We validate our proposed model on different architectures and pre-training methods

Rangel Daroya, Luisa Vieira Lucchese, Travis Simmons, Punwath Prum, Tamlin Pavelsky, John Gardner, Colin Gleason, Subhransu Maji. “Improving 

Satellite Imagery Masking using Multi-task and Transfer Learning”, in arXiv preprint arXiv:2412. 08545, 2024.
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• We show that we outperform previous methods by at least 12% and 6% F1 

Score for cloud shadow and clear predictions, respectively

We validate on manually labeled cloud data from USGS personnel

Table. Performance of cloud masking on manually labeled LANA 
dataset. Overall performance is measured with F1 Score.

[1] Zhang, Hankui K., Dong Luo, and David P. Roy. "Improved Landsat Operational Land Imager (OLI) Cloud and Shadow Detection with the Learning Attention 
Network Algorithm (LANA)." Remote Sensing 16.8 (2024): 1321.
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● We outperform baseline methods by almost 9% F1 Score on water 

masking

We validate our proposed model on different architectures and pre-training methods

Rangel Daroya, Luisa Vieira Lucchese, Travis Simmons, Punwath Prum, Tamlin Pavelsky, John Gardner, Colin Gleason, Subhransu Maji. “Improvi ng 

Satellite Imagery Masking using Multi-task and Transfer Learning”, in arXiv preprint arXiv:2412. 08545, 2024.
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● Runtime is 30x faster than baseline, making it possible to run the model 

daily for frequent monitoring of rivers

We validate our proposed model on different architectures and pre-training methods

Rangel Daroya, Luisa Vieira Lucchese, Travis Simmons, Punwath Prum, Tamlin Pavelsky, John Gardner, Colin Gleason, Subhransu Maji. “Improvi ng 

Satellite Imagery Masking using Multi-task and Transfer Learning”, in arXiv preprint arXiv:2412. 08545, 2024.



25

● We can observe SSC over any water in satellite imagery
○ Introduces performance and speed improvements 
○ Possible to run at a high frequency over time and space

Conclusion

Rangel Daroya, Luisa Vieira Lucchese, Travis Simmons, Punwath Prum, Tamlin Pavelsky, John Gardner, Colin Gleason, Subhransu Maji. “Improvi ng 

Satellite Imagery Masking using Multi-task and Transfer Learning”, in arXiv preprint arXiv:2412. 08545, 2024.

arxiv.org/abs/2412.08545

A hosted analytic collaborative framework for global river water quantity and 
quality from SWOT, Landsat, and Sentinel-2
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● In this talk, we will explore domain-specific applications of computer vision

Computer Vision in the Wild

1. Remote monitoring of global water 
quality using satellite images

2. Helping wildlife conservation efforts 
through wildlife habitat information and 
satellite imagery

3. Modeling relationships between 
domain-specific tasks for efficient ML 
model training



WildSAT: Learning Satellite Image 

Representations from Wildlife 

Observations

Rangel Daroya1, Elijah Cole2, Oisin Mac Aodha3, Grant Van Horn1, Subhransu Maji1
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Recall: Machine Learning Overview

Machine Learning 
Model

Step 1: Training

Step 2: Inference/Testing

Data Label

“dog”

Machine Learning 
Model

“dog”
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The input to an ML model can be compressed to a vector

Model Feature Vectors

Machine Learning 
Model

Data Label

“dog”

ML model
encoder

ML model
decoder “dog”[0, 0.2, 0.001, 0.2679, …]

feature vector
(image representation)
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Satellite image representations refer to the encoded satellite image using a 

given ML model

Satellite image representations

ML model
encoder

Satellite image

[0, 0.2, 0.001, 0.2679, …]

Satellite image representation
(small vector)

Goal: train any ML model to be better at producing satellite image 

representations (better means improved performance on satellite image tasks)

Rangel Daroya, Elijah Cole, Oisin Mac Aodha, Grant Van Horn, Subhransu Maji. "WildSAT: Learning Satellite Image Representations from Wildl ife

Observations," in arXiv preprint arXiv:2412.14428, 2024.
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• Main question: can we use the distribution of wildlife to improve 
satellite image representation?

• To do this, we need a dataset with the following:
▪ Location: Latitude, longitude
▪ Satellite images at the given location
▪ Text that describe the species present at the location and corresponding 

information about their habitat

Overview

Rangel Daroya, Elijah Cole, Oisin Mac Aodha, Grant Van Horn, Subhransu Maji. "WildSAT: Learning Satellite Image Representations from Wildl ife

Observations," in arXiv preprint arXiv:2412.14428, 2024.
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Data from iNaturliast [1], combined with Wikipedia [2] and Sentinel [3] data can be 
used

Wildlife observation data can be used to learn about the different habitats

[1] Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig Adam, Pietro Perona, and Serge Belongie. The inaturalist species 
classification and detection dataset. In Proceedings of the IEEE conference on computer vision and pattern recognition , pages 8769–8778, 2018

[2] Wikipedia. https://www.wikipedia.org. Accessed on 2024-11-14.
[3] ESA. Sentinel-1-missions-sentinel online-sentinel online. Eur. Sp. Agency, 2022. 

Why use wildlife observation data?

● Associated text of the wildlife contains information about the habitat and 
the types of environment each species prefer

● These habitat descriptions can then supplement and further describe 
satellite imagery
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Data from iNaturliast [1], combined with Wikipedia [2] and Sentinel [3] data can be 
used

Wildlife observation data can be used to learn about the different habitats

[1] Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig Adam, Pietro Perona, and Serge Belongie. The inaturalist species 
classification and detection dataset. In Proceedings of the IEEE conference on computer vision and pattern recognition , pages 8769–8778, 2018

[2] Wikipedia. https://www.wikipedia.org. Accessed on 2024-11-14.
[3] ESA. Sentinel-1-missions-sentinel online-sentinel online. Eur. Sp. Agency, 2022. 
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WildSAT Architecture (Contrastive Training)

Rangel Daroya, Elijah Cole, Oisin Mac Aodha, Grant Van Horn, Subhransu Maji. "WildSAT: Learning Satellite Image Representations from Wildl ife

Observations," in arXiv preprint arXiv:2412.14428, 2024.
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WildSAT Architecture (Contrastive Training)

Image

Text

Location

Rangel Daroya, Elijah Cole, Oisin Mac Aodha, Grant Van Horn, Subhransu Maji. "WildSAT: Learning Satellite Image Representations from Wildl ife

Observations," in arXiv preprint arXiv:2412.14428, 2024.



36

WildSAT Architecture (Contrastive Training)

Training involves 3 

objectives that cover 

the 3 modalities:

1. Image

2. Text

3. Location

Contrastive loss is used 

for each of the 

objectives
- encourages similar data to 

have similar representations

Rangel Daroya, Elijah Cole, Oisin Mac Aodha, Grant Van Horn, Subhransu Maji. "WildSAT: Learning Satellite Image Representations from Wildl ife

Observations," in arXiv preprint arXiv:2412.14428, 2024.
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WildSAT at Inference Time

Rangel Daroya, Elijah Cole, Oisin Mac Aodha, Grant Van Horn, Subhransu Maji. "WildSAT: Learning Satellite Image Representations from Wildl ife

Observations," in arXiv preprint arXiv:2412.14428, 2024.
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WildSAT at Inference Time

Downstream classification tasks can use 

the satellite representation from the 

encoder without training the encoder.

A trainable linear layer is then tuned for 

varying datasets with different classes.

Rangel Daroya, Elijah Cole, Oisin Mac Aodha, Grant Van Horn, Subhransu Maji. "WildSAT: Learning Satellite Image Representations from Wildl ife

Observations," in arXiv preprint arXiv:2412.14428, 2024.
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WildSAT at Inference Time

Zero-shot image retrieval requires no 

additional training.

Rangel Daroya, Elijah Cole, Oisin Mac Aodha, Grant Van Horn, Subhransu Maji. "WildSAT: Learning Satellite Image Representations from Wildl ife

Observations," in arXiv preprint arXiv:2412.14428, 2024.
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WildSAT at Inference Time

Zero-shot image retrieval requires no 

additional training.

The representation from the image and 

the text encoders are taken as is from the 

frozen encoders.

Rangel Daroya, Elijah Cole, Oisin Mac Aodha, Grant Van Horn, Subhransu Maji. "WildSAT: Learning Satellite Image Representations from Wildl ife

Observations," in arXiv preprint arXiv:2412.14428, 2024.
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WildSAT at Inference Time

Zero-shot image retrieval requires no 

additional training.

The representation from the image and 
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Given a text query (e.g., “river”), its 

representation/vector is computed

Rangel Daroya, Elijah Cole, Oisin Mac Aodha, Grant Van Horn, Subhransu Maji. "WildSAT: Learning Satellite Image Representations from Wildl ife

Observations," in arXiv preprint arXiv:2412.14428, 2024.
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WildSAT at Inference Time

Zero-shot image retrieval requires no 

additional training.

The representation from the image and 

the text encoders are taken as is from the 

frozen encoders.

Given a text query (e.g., “river”), its 

representation/vector is computed

Given a collection of images, all their 

corresponding representations/vectors are 

also computed

The image vector with the highest cosine 

similarity with the text vector will be 

returned as the output.

Rangel Daroya, Elijah Cole, Oisin Mac Aodha, Grant Van Horn, Subhransu Maji. "WildSAT: Learning Satellite Image Representations from Wildl ife

Observations," in arXiv preprint arXiv:2412.14428, 2024.
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Zero-shot Retrieval Examples (“ocean”)

Rangel Daroya, Elijah Cole, Oisin Mac Aodha, Grant Van Horn, Subhransu Maji. "WildSAT: Learning Satellite Image Representations from Wildl ife

Observations," in arXiv preprint arXiv:2412.14428, 2024.
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Zero-shot Retrieval Examples (“mountains and hills”)

Rangel Daroya, Elijah Cole, Oisin Mac Aodha, Grant Van Horn, Subhransu Maji. "WildSAT: Learning Satellite Image Representations from Wildl ife

Observations," in arXiv preprint arXiv:2412.14428, 2024.
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Zero-shot Retrieval Examples (“cactus”)

Rangel Daroya, Elijah Cole, Oisin Mac Aodha, Grant Van Horn, Subhransu Maji. "WildSAT: Learning Satellite Image Representations from Wildl ife

Observations," in arXiv preprint arXiv:2412.14428, 2024.
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Zero-shot Retrieval Examples (“fish”)

Rangel Daroya, Elijah Cole, Oisin Mac Aodha, Grant Van Horn, Subhransu Maji. "WildSAT: Learning Satellite Image Representations from Wildl ife

Observations," in arXiv preprint arXiv:2412.14428, 2024.
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More Zero-shot Satellite Image Retrieval Examples

Rangel Daroya, Elijah Cole, Oisin Mac Aodha, Grant Van Horn, Subhransu Maji. "WildSAT: Learning Satellite Image Representations from Wildl ife

Observations," in arXiv preprint arXiv:2412.14428, 2024.
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WildSAT (+WS) improves performance across different datasets and models

Linear probing results on downstream satellite image classification datasets

Rangel Daroya, Elijah Cole, Oisin Mac Aodha, Grant Van Horn, Subhransu Maji. "WildSAT: Learning Satellite Image Representations from Wildl ife

Observations," in arXiv preprint arXiv:2412.14428, 2024.
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● We showed that information on habitats of wildlife can be used to 

improve satellite image representations in ML models
○ Can improve performance on downstream satellite image tasks
○ Can be used for zero-shot image retrieval using arbitrary text input

WildSAT: Learning Satellite Image Representations from Wildlife Observations

Conclusion

arxiv.org/abs/2412.14428

Rangel Daroya, Elijah Cole, Oisin Mac Aodha, Grant Van Horn, Subhransu Maji. "WildSAT: Learning Satellite Image Representations from Wildl ife

Observations," in arXiv preprint arXiv:2412.14428, 2024.
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● In this talk, we will explore domain-specific applications of computer vision

Computer Vision in the Wild

1. Remote monitoring of global water 
quality using satellite images

2. Helping wildlife conservation efforts 
through wildlife habitat information and 
satellite imagery

3. Modeling relationships between 
domain-specific tasks for efficient ML 
model training



Task2Box: Box Embeddings for 

Modeling Asymmetric Task Relationships

Rangel Daroya, Aaron Sun, Subhransu Maji

University of Massachusetts Amherst
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Overview: Transfer Learning

Machine Learning 
Model

Data Label

“dog”

Machine Learning 
Model

Training #1 (Pre-training)

Training #2 (Fine-tuning)
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Overview: Transfer Learning

Machine Learning 
Model

Data Label

“dog”

Machine Learning 
Model

Training #1 (Pre-training)

Training #2 (Fine-tuning)
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Asymmetry of transfer learning
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● Modeling and visualizing relationships between tasks or datasets is 

important for solving various meta-tasks
○ Dataset Discovery, Multitask Learning, Transfer Learning

● However, many relationships are asymmetric (e.g., containment, 

transferability)

Problem Overview

(b) Taxonomy (iNaturalist + CUB)(a) Transfer Learning task affinity (Taskonomy [1])

[1] Zamir, Amir R., et al. "Taskonomy: Disentangling task transfer learning." Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.
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Satellite image representations refer to the encoded satellite image using a 

given ML model

Recall: Satellite image representations

ML model
encoder

Satellite image

[0, 0.2, 0.001, 0.2679, …]

Satellite image representation
(small vector)

Rangel Daroya, Elijah Cole, Oisin Mac Aodha, Grant Van Horn, Subhransu Maji. "WildSAT: Learning Satellite Image Representations from Wildl ife

Observations," in arXiv preprint arXiv:2412.14428, 2024.
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“cat”

“dog”

● Can we create task representations that preserve asymmetric 

relationships?

Task Representations

Rangel Daroya, Aaron Sun, Subhransu Maji. “Task2Box: Box Embeddings for Modeling Asymmetric Task Relationships,” Proceedings of the 

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024, pp. 28827-28837

Task2Box

Dataset

[[4,5], [1,3]]

Box representation of the dataset
(not just a vector)

“tree”
(4,5)

3

1

y

x
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● Can we create task representations that preserve asymmetric 

relationships?
● Proposed Solution:

○ Use a model to learn box embeddings (axis-aligned hyperrectangles) to represent 
each dataset in a low dimension

Problem Overview

Tasks as points Tasks as boxes
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● Boxes can represent asymmetric relationships (unlike points)
○ hierarchy, transferability

● It can easily be visualized and interpreted
● Boxes are closed under intersection

○ I.e., the intersection of two boxes will always be a box

Why boxes?

Tasks as boxes
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Task2Box Accurately Models Hierarchical Relationships

Rangel Daroya, Aaron Sun, Subhransu Maji. “Task2Box: Box Embeddings for Modeling Asymmetric Task Relationships,” Proceedings of the 

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024, pp. 28827-28837
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Task2Box Accurately Models Hierarchical Relationships

Rangel Daroya, Aaron Sun, Subhransu Maji. “Task2Box: Box Embeddings for Modeling Asymmetric Task Relationships,” Proceedings of the 

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024, pp. 28827-28837
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• The figure shows predicted source 

tasks (larger boxes) that transfer well 

to target tasks (smaller shaded 
boxes). 

• Task2Box can generalize on task 
affinity values from Taskonomy to 

predict and show transferability 

between tasks.

Task2Box Accurately Models Transfer Learning Relationships

Rangel Daroya, Aaron Sun, Subhransu Maji. “Task2Box: Box Embeddings for Modeling Asymmetric Task Relationships,” Proceedings of the 

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024, pp. 28827-28837
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• Proposed a method of representing tasks as box embeddings

• The representations are interpretable with low dimensionality

• Shows that hierarchical and transfer learning relationships can be 

accurately modeled

Task2Box: Box Embeddings for Modeling Asymmetric Task Relationships

Conclusion

github.com/cvl-umass/task2box

Rangel Daroya, Aaron Sun, Subhransu Maji. “Task2Box: Box Embeddings for Modeling Asymmetric Task Relationships,” Proceedings of the 

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024, pp. 28827-28837
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● In this talk, we will explore domain-specific applications of computer vision

Computer Vision in the Wild

1. Remote monitoring of global water 
quality using satellite images

2. Helping wildlife conservation efforts 
through wildlife habitat information and 
satellite imagery

3. Modeling relationships between 
domain-specific tasks for efficient ML 
model training
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Thank you to all collaborators and colleagues

.. and many more
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Papers in this talk:

1. Rangel Daroya, Luisa Vieira Lucchese, Travis Simmons, Punwath Prum, Tamlin Pavelsky, 
John Gardner, Colin Gleason, Subhransu Maji. “Improving Satellite Imagery Masking 
using Multi-task and Transfer Learning”, in arXiv preprint arXiv:2412. 08545, 2024.

2. Rangel Daroya, Elijah Cole, Oisin Mac Aodha, Grant Van Horn, Subhransu Maji. "WildSAT: 
Learning Satellite Image Representations from Wildlife Observations," in arXiv preprint 
arXiv:2412.14428, 2024.

3. Rangel Daroya, Aaron Sun, Subhransu Maji. “Task2Box: Box Embeddings for Modeling 
Asymmetric Task Relationships,” Proceedings of the IEEE/CVF Conference on Computer 
Vision and Pattern Recognition (CVPR), 2024, pp. 28827-28837

Thank you!

Contact

Rangel Daroya

Email: rdaroya@umass.edu

rangeldaroya.github.io
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